Нейтронная звезда Температура и тепловое давление газа в звездах поддерживаются внутренними источниками энергии. Если они иссякнут (а рано или поздно в каждой звезде это происходит), силы тяготения сожмут звезду в маленький плотный шар. В нормальных звездах энергия постоянно вырабатывается в центральной области, где плотность и температура газа достигают максимальных значений. Там происходят термоядерные реакции между протонами (ядрами атомов водорода), в результате которых самый легкий газ — водород превращается в более тяжелый гелий. При этом выделяется та энергия, которая позволяет звездам долго сохранять свою высокую температуру, но запасы водорода в звездах постепенно убывают. В Солнце, например, каждую секунду количество водорода уменьшается примерно на 600 млн. тонн, и почти на столько же больше становится гелия. За секунду выделяется энергия, равная примерно 3,8 • 10 в 26 степени Дж, которую уносят электромагнитные волны. Несколько процентов этой энергии получают всепроникающие элементарные частицы — нейтрино, возникающие при ядерных реакциях. Они легко пронизывают звезды насквозь и улетают со скоростью света в межзвездное пространство.
 В некоторых звездах — красных гигантах температура в центральной области настолько высока, что там начинает происходить реакция между ядрами гелия, в результате которой возникает более тяжелый элемент — углерод. Эта реакция также сопровождается выделением энергии.
По современным научным представлениям, большая часть элементов тяжелее гелия, существующих в природе, образовалась при термоядерных реакциях в недрах звезд или в реакциях, протекающих при взрывах сверхновых звезд.
Когда звезда очень молода и в ней еще не начались ядерные реакции, источником ее энергии может служить сжатие звездного вещества, т. е. его уплотнение под действием собственной гравитации: потенциальная энергия вещества уменьшается и переходит в тепловую.
Как и все тела в природе, звезды не остаются неизменными. Они рождаются, эволюционируют и, наконец, «умирают». Вопрос о том, как образуются звезды, окончательно не решен. Наблюдаемая связь областей звездообразования с очень массивными облаками холодного газа и теоретические расчеты эволюции газа в межзвездном пространстве говорят о возможности рождения звезд путем постепенного сжатия первоначально сильно разреженной межзвездной среды. Основной силой, сжимающей газ, является гравитационное притяжение его молекул друг к другу.
 Продолжительность жизни звезды зависит от ее массы. Звезды с массой меньшей, чем у Солнца, очень экономно тратят запасы своего ядерного «топлива» и могут светить десятки миллиардов лет. Поэтому звезды небольших масс не успели состариться. Зато массивные звезды светят сравнительно недолго. Так, звезды с массой 15 масс Солнца растрачивают запасы своей энергии всего за 10 млн. лет. Звезды, такие, как наше Солнце, могут жить примерно в тысячу раз дольше.
 Почти всю свою жизнь звезда сохраняет температуру и размер практически постоянными. При этом звезда находится на главной последовательности диаграммы «спектр — светимость». Но когда в центральной области весь водород оказывается превращенным в гелий, звезда начинает сравнительно быстро изменяться. Она увеличивается в размере, и, хотя температура ее поверхности при этом падает, излучаемая звездой энергия возрастает во много раз. Звезда становится красным гигантом. Температура в центральной области поднимается до 100 млн. градусов, и в плотном гелиевом ядре такой звезды «загорается» реакция превращения гелия в углерод.
 На определенном этапе развития красного гиганта может произойти «сброс» внешних слоев этой раздувшейся звезды, и тогда звезда будет находиться внутри газового кольца планетарной туманности. Сама звезда после этого сожмется и превратится в медленно остывающий белый карлик.
Такой путь развития ожидает и наше Солнце: через 6—7 млрд. лет оно, пройдя стадию красного гиганта, станет белым карликом. Звезды, у которых масса в 1,5—3 раза больше, чем у Солнца, не смогут в конце жизни остановить свое сжатие на стадии белого карлика. Мощные силы гравитации сожмут их до такой плотности, при которой произойдет «нейтронизация» вещества: взаимодействие электронов с протонами приведет к тому, что почти вся масса звезды будет заключена в нейтронах. Образуется нейтронная звезда. Наиболее пассивные звезды могут превратиться в нейтронные, после того как они взорвутся как сверхновые. Расчеты показывают, что нейтронные звезды должны быть сильно намагничены. Быстро вращаясь вокруг оси, они могут рождать мощные потоки радиоволн. Открытые в 60-х гг. импульсные источники радиоизлучения — пульсары и являются, по-видимому, такими вращающимися нейтронными звёздами, возникшими после взрывов сверхновых.
 Если масса звезды (или ее «остатка» после потери вещества) превышает 3—5 масс Солнца, то, начав сжиматься в конце своей активной жизни, она не сможет остановить своего сжатия даже на стадии нейтронной звезды. Конечным результатом такого безудержного гравитационного сжатия должно явиться образование черной дыры.

Энциклопедический словарь юного астронома.1986 год.